POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name Nuclear power engineering [S2ZE1E>EJ]

Course			
Field of study Green Energy		Year/Semester 1/1	
Area of study (specialization)		Profile of study general academic	>
Level of study second-cycle		Course offered in English	
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 30	Laboratory classe 15	es	Other (e.g. online) 0
Tutorials 15	Projects/seminars 0	5	
Number of credit points 4,00			
Coordinators dr inż. Jakub Sierchuła jakub.sierchula@put.poznan.pl		Lecturers	

Prerequisites

Student has basic knowledge of physics, chemistry, fundamentals of electrical power engineering and fundamentals of thermal power engineering. Student is able to solve mass and energy balance equations in the elementary thermal cycle.

Course objective

Acquiring basic knowledge in the field of physics of nuclear power reactors and becoming familiar with currently available technologies used in nuclear energy.

Course-related learning outcomes

Knowledge:

- 1. Student understands the essence of phenomena occurring in nuclear reactor core.
- 2. Has a basic knowledge of the construction of power reactors.
- 3. Knows basic technical solutions to ensure safe operation of a nuclear power plant.
- 4. Understands the environmental impact of a nuclear power plant.

Skills:

- 1. Is able to perform basic criticality calculations for a nuclear reactor.
- 2. Is able to apply theoretical knowledge to solve reactor physics problems.
- 3. Is able to describe and characterize the basic operations of a nuclear power plant.

4. Is able to describe and calculate thermal cycles for power plants with different types of nuclear reactors.

Social competences:

1. Is aware of the high responsibility of a power engineer in a nuclear power plant to make decisions.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

LECTURE

Assessment of knowledge and skills in the written test at the last lecture.

TUTORIALS

Assessment on systematic verification of knowledge, activity during tutorials and written colloquium on calculus tasks.

LABORATORY CLASSES

Evaluation based on ongoing reviews and completed reports.

Programme content

LECTURE

Nuclear fuels and their properties. Fission of uranium nucleus, fission fragments, fission energy, radioactive chains of fission fragments. Interaction of neutrons with matter, active cross sections, slowing down and escape of neutrons. Neutron life cycle, reactor criticality conditions. Neutron balance equation of a reactor. Construction of nuclear reactors. Operation of nuclear reactors. Safety systems used in nuclear power plants. Fuel cycle. Waste disposal.

TUTORIALS

Energy analysis of technological systems of nuclear units.

LABORATORY CLASSES

Modeling and analysis of nuclear power units. Investigation of operating parameters with the use of nuclear power unit simulator.

Course topics

none

Teaching methods

LECTURE Multimedia presentation supplemented by examples given on the blackboard. TUTORIALS Calculus tasks counted on the blackboard. LABORATORY CLASSES Classes conducted with the use of specialized software.

Bibliography

Basic: Glasstone S., Principles of Nuclear Reactor Engineering, D. Van Nostrand Company, Inc. Lamarsh J. R., Introduction to Nuclear Engineering, Prentice Hall Oka Y., Nuclear Reactor Design, Springer Celiński Z., Strupczewski A., Podstawy energetyki jądrowej, WNT Ackermann G., Eksploatacja elektrowni jądrowych, WNT

Additional: Meiswinkel R., Meyer J., Schnell J., Design and Construction of Nuclear Power Plants, Ernst & Sohn GmbH Kubowski J., Elektrownie jądrowe, WNT Kiełkiewicz M., Teoria reaktorów jądrowych, WNT

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	60	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	40	1,50